untukmencari determinan matrik A maka, detA = ad - bc. Sifat-Sifat Determinan. A. Determinan dengan Minor dan kofaktor. kofaktor dari a 11 adalah. c B. Determinan dengan Ekspansi Kofaktor Pada Baris Pertama = a 11 (a 22 a 33 - a 23 a 32) - a 12 (a 21 a 33 - a 23 a 31) + a 13 (a 1207/2018 6:53 Aljabar Linear Elementer 17 Secara umum, cara menghitung determinan dengan ekspansi kofaktor : • Menghitung det (A) dengan ekspansi kofaktor sepanjang baris ke-i det (A) = ai1 Ci1 + ai2 Ci2 ++ ain Cin • Menghitung det (A) dengan ekspansi kofaktor sepanjang kolom ke-j det (A) = aij C1j + a2j C2j ++ anj Cnj baju pink rok hitam cocok dengan jilbab warna apa. Pada tulisan ini saya akan membagikan sidikit ilmu yang saya dapat tentang bagaimana cara menghitung determinan matriks. Metode yang digunakan adalah menggunakan Ekspansi Kofaktor. Metode ini tidak hanya digunakan untuk menghitung determinan matriks atau tapi digunakan untuk matriks yang berordo lebih besar lagi seperti, dan seterusnya. Untuk menghitung determinan menggunakan metode ini, rumusnya dijamin oleh Teorema berikut. Teorema 1. Determinan matriks yang berukuran dapat dihitung dengan mengalikan entri-entri dalam suatu baris atau kolom dengan kofaktor-kofaktornya dan menambahkan hasil-hasil kali yang dihasilkan yakni untuk setiap dan , maka detA = a 1j C 1j + a 2j C 2j + … + a nj C nj ekspansi kofaktor sepanjang kolom ke-j atau detA = a i1 C i1 + a i2 C i2 + … + a in C in ekspansi kofaktor sepanjang baris ke-i Untuk lebih memperjelas apa itu kofaktor, perhatikan Definisi dibawah ini. Definisi 2. Jika A adalah matriks kuadrat, maka minor entri a ij dinyatakan oleh M ij dan didefinisikan menjadi determinan submatriks yang tetap setelah baris ke-i dan kolom ke-j dicoret dari A. Bilangan -1 i+j Mij dinyatakan oleh C ij dan dinamakan kofaktor entri a ij. Contoh 3. Misalkan kita punya matriks A =. Tentukan minor entri a 11 , a 12 , dan a 13. Tentukan juga kofaktor entri M 11 , M 12 dan M 13 ! Penyelesaian. minor entri a 11 adalah M 11 = = = 58 – 46 = 16 kofaktor a 11 adalah C 11 = -1 1+1 M 11 = -1 2 16 = 16

menghitung determinan dengan ekspansi kofaktor